Shaking force balancing of a 2-DOF isotropic horological oscillator

Despite centuries of research and significant advances, the escapement mechanism used to count and maintain oscillations of mechanical time bases remains a complex mechanism and a major source of energy losses. We showed in previous work that, instead of the widely used rotational one degree-of-freedom (DOF) oscillators, 2-DOF flexure oscillators have the potential of revolutionizing mechanical watchmaking by eliminating the traditional escapement, replacing it by a simple crank driving a pin. Additionally, using flexures increases the quality factor of the time base, leading to further potential improvements in timekeeping accuracy and energy consumption. However, a significant challenge of these new time bases is their balancing such that the influence of external accelerations on their frequency is minimized, a necessary condition for accurate timekeeping in portable applications. This article presents a novel 2-DOF planar flexure oscillator called Wattwins and demonstrates how it can be made insensitive to linear accelerations such as gravity. For this purpose, a new approach to shaking force balancing is developed based on the decomposition of perturbations into effects corresponding to different orders of center of mass displacement. A full analytical model for frequency tuning and shaking force balancing of the 2-DOF oscillator is derived using a pseudo-rigid-body model and assuming that it can be decomposed into two independent 1-DOF oscillators. The results are validated by the finite element method and show that practical mechanical watch specifications can theoretically be reached. A physical prototype was also constructed and preliminary experimental results confirm the theory as well as the simulations.

Source: Precision Engineering

Link: https://www.sciencedirect.com/science/article/pii/S0141635921001586

Nos prochaines manifestations

Affiche JE2021
  • 28.09.2021 - SwissTech Convention Center, Lausanne et en ligne

JE2021 De nouvelles complications dans le monde horloger?

Les inscriptions en présentiel sont closes, vous pouvez encore vous inscrire en streaming.

L'application SSC

Suivez en direct les actualités de notre société sur votre smartphone. Recevez en exclusivité les informations importantes grâce à la notification intégrée.

  • Télécharger notre application sur l'App Store
  • Télécharger notre application sur Google Play